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Preface

This is a note for the lecture given in the 2016 KIAS-SNU Physics Winter Camp which is
held at KIAS in December 17–23, 2016.

Most systems in nature are in a nonequilibrium state. In contrast to the thermal equilib-
rium systems, dynamics is important for nonequilibrium systems. The lecture covers the
Langevin equation and the Fokker-Planck equation formalism for the study of dynam-
ics of both equilibrium and nonequilibrium systems. It also covers the basic concepts of
stochastic thermodynamics and the fluctuation theorems. This lecture is mainly based on
the books [Gar10, Ris89, VK11].
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1
Brownian motion

Brown in 1827 observed small pollen grains suspended in water at finite temperature T
through a microscope. He observed an irregular motion of the small particles, which is
later called the Brownian motion.

1.1 Einstein’s theory

Einstein in 1905 explain the nature of the Brownian motion by assuming the stochastic
nature of interactions between Brownian particles and fluid molecules. Let f (x, t)dx be
the fraction of Brownian particles between x and x + dx at time t. If a Brownian particle
is kicked by fluid molecules during the time interval τ, it is displaced by the amount of
∆. It is reasonable to assume that ∆ is a random variable with a distribution function
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1 Brownian motion

φ(∆) = φ(−∆). Then, one obtains that

f (x, t + τ) =
∫ −∞

−∞
f (x− ∆, t)φ(∆)d∆ (1.1)

Expansion upto O(∆2) leads to the diffusion equation

∂ f
∂t

= Dd
∂2 f
∂x2 (1.2)

with the diffusion constant Dd = 1
2τ

∫
∆2φ(∆)d∆. Its solution is given by

f (x, t) =
1√

4πDdt
e−(x−x0)

2/(4Ddt) . (1.3)

The root mean square displacement is then scales as√
〈(x− x0)2〉 =

√
2Ddt ∝ t1/2. (1.4)

The t1/2 dependence is the hallmark of the diffusive motion.

1.2 Langevin’s theory

Langevin in 1906 suggested another explanation for the Brownian motion. He incorpo-
rated the effects of the random interaction into the Newton’s equation of motion, and
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1 Brownian motion

proposed the following equation:

m
d2x
dt2 = −γ

dx
dt

+ X(t). (1.5)

This is the first appearance of the stochastic differential equation. In a rather crude way,
Langevin derived the same relation in (1.4). He also derived the relation

Dd =
kBT

γ
(1.6)

known as the Einstein relation.

1.3 Perrin’s experiment

Perrin in 1908 recorded the trajectory of a colloidal particle of radius 0.53µm every 30
seconds, and confirmed the diffusive motion of the Brownian particle experimentally. He
was awarded the Nobel Prize in Physics in 1926.
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1 Brownian motion

Figure 1.1: Perrin’s experiment
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2
Langevin equation

We are interested in a particle (or system of particles) in a thermal heat bath at temperature
T. The thermal heat bath itself is a collection of many molecules and interact with the
system in a complex way. At the phenomenological level, it is reasonable to assume that
the heat bath provides a damping force on average and a fluctuating random force. The
resulting Langevin equation is given by

v =
dx
dt

, m
dv
dt

= f (x, t)− γv + ξ(t), (2.1)

where ξ(t) is the Gaussian distributed white noise satisfying

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2.2)

More rigorous derivation of the Langevin equation is found in the lecture of Prof. Yeo
given in PSI 2014 (http://psi.kias.re.kr/2014/).

5



2 Langevin equation

2.1 Brownian motion

The Langevin equation for a free Brownian particle is given by

mv̇ = −γv + ξ(t) with the initial condition v(0) = v0. (2.3)

It has the formal solution

v(t) = v0e−(γ/m)t +
1
m

∫ t

0
e−(γ/m)(t−t′)ξ(t′)dt′. (2.4)

Using the formal solution, we can calculate the average value of various quantities. The
average velocity decays exponentially as 〈v(t)〉 = v0e−(γ/m)t. The two-time correlation
function is given by〈

(v(t)− 〈v(t)〉)(v(t′)− 〈v(t′)〉)
〉
=

D
γm

(
e−(γ/m)|t−t′ | − e−(γ/m)(t+t′)

)
. (2.5)

The equal-time correlation function in the infinite time limit converges to

〈v2〉 = D
γm

. (2.6)

The kinetic energy of a free particle in termal equilibrium is given by E = m
2 〈v2〉eq = 1

2 kBT.
By imposing the Einstein relation

D = γkBT (2.7)

the Langevin equation describes the equilibrium dynamics.
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2 Langevin equation

2.2 Ornstein-Uhlenbeck process

Consider a harmonic oscillator in a heat bath at temperature T, whose Langevin equation
is given by

ẋ = v , mv̇ = −kx− γv + ξ(t) . (2.8)

When the damping coefficient is very large or the mass is very small, the system is in the
overdamped regime. The Langevin equation then becomes

γẋ = −kx + ξ(t) . (2.9)

A stochastic process governed by the linear Langevin equation is called the OU process.
In fact, the Brownian motion in the previous section is also an OU process for the velocity
v. Using the connection, one can easily evaluate 〈x2〉eq.

The general form of the OU process is given by

q̇i = ∑
j

aijqj + ξi(t) (2.10)

where 〈ξi(t)〉 = 0 and 〈ξi(t)ξ j(t′)〉 = 2Dijδ(t− t′) with the noise matrix Dij = Dji.

2.3 Wiener process

The Wiener process, the simplest stochastic process, has the Langevin equation

Ẇ = η(t) with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′) (2.11)
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2 Langevin equation

The solution is given by

W(t) = W0 +
∫ t

0
η(t′)dt′. (2.12)

One can show that

〈W(t)〉 = W0 and 〈(W(t)−W0)
2〉 = t . (2.13)

The Wiener process describes the trajectory of a random walker.
Consider the displacement dW(t) ≡ W(t + dt) −W(t) =

∫ t+dt
t ξ(t′)dt′ during the in-

finitesimal time interval dt. It is Gaussian distributed random variable with

〈dW(t)〉 = 0 and 〈dW(t)2〉 = dt . (2.14)

It indicates that dW = O(
√

dt).

2.4 Integral form of the Langevin equation

The Langevin equation of the form q̇ = f (q, t) + ξ(t) can be written as

dq = f (q, t)dt + dW(t) (2.15)

where dq ≡ q(t + dt)− q(t).

8



2 Langevin equation

2.5 Numerical integration of the Langevin equation

The solution of the Langevin equation in (2.15) can be simulated numerically. For a
stochastic trajectory in the time interval [0 : t], first discretize the time as ti=0,··· ,N = i(∆t)
with ∆t = t/N. Then, qi = q(ti) are found from the recursion relation

qi+1 = qi + f (qi, ti)∆t +
√

2D(∆t) ri , (2.16)

where ri is an independent random variable of zero mean (〈ri〉 = 0) and unit vari-
ance (〈r2

i 〉 = 1). This method is called the Euler method. This is a straightforward ex-
tension of the Euler method for the ordinary differential equation. Advanced numerical
methods for the stochastic differential equation are found in Ref. [GSH88].

[Exercise] Integrate numerically the Langevin equation in (2.8) with k = γ = kBT = m = 1
starting from the initial condition x(0) = v(0) = 0. Confirm the equipartition theorem
〈x(∞)2〉 = 〈v(∞)2〉 = 1.
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3
Fokker-Planck Equation

Figure 3.1 displays 6 different realizations of the Wiener process trajectory. Due to the
stochastic nature of the Langevin equation, W(t) is a random variable fluctuating from
sample to sample. Thus, it is meaningful to consider the probability distribution P(W(t) =
X|W(0) = 0). In this chapter, we study the Fokker-Planck equation that governs the time
evolution of the probability distribution function.

3.1 Markov process and Chapman-Kolmogorov equation

Consider a time-dependent random variable X(t) generated from a stochastic process. It is
fully characterized by the joint probability densities p(x1, t1; x2, t2; x3, t3; · · · ). It describes
how much probable it is to measure the values x1, x2, x3, · · · at time t1 > t2 > t3 > · · · .
In terms of the joint probability densities, one can also define conditional probability
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3 Fokker-Planck Equation
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Figure 3.1: Trajectories of the Wiener process.
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3 Fokker-Planck Equation

densities

p(x1, t1; x2, t2; · · · |y1, τ1; y2, τ2; · · · ) = p(x1, t1; x2, t2; · · · ; y1, τ1; y2, τ2; · · · )
p(y1, τ1; y2, τ2; · · · ) , (3.1)

where the times are ordered as t1 > t2 > · · · > τ1 > τ2 > · · · .
A stochastic process is called the Markov process, named after a Russian mathematician

Andrey Markov (1956–1922), if the conditional probability is determined entirely by the
knowledge of the most recent condition, i.e.,

p(x1, t1; x2, t2; · · · |y1, τ1; y2, τ2; · · · ) = p(x1, t1; x2, t2; · · · |y1, τ1). (3.2)

In the Markov process, the future is determined by the present not by the past. A memory
effect destroys the Markov property.

In the Markov process, any joint probability can be factorized as

p(1; 2; · · · ; n) = p(1|2)p(2|3) · · · p(n− 1|n)p(n). (3.3)

Therefore, the transition probability density p(x, t|y, t′) fully characterizes a Markov pro-
cess. Once you know the transition probability densities and the initial probability density,
any joint probability density is determined.

The Markov property is a very strong condition. The transition probability for a Markov
process should satisfy the Chapmann-Kolmogorov equation

p(x1, t1|x3, t3) =
∫

dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3) . (3.4)
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3 Fokker-Planck Equation

It is named after a British mathematician Sydney Chapman (1888–1970) and a Russian
mathematician Andrey Kolmogorov (1903–1987).

3.2 Fokker-Planck equation

A stochastic process governed by the Langevin equation

dx = A(x, t)dt + B dW(t) (3.5)

belongs to the class of Markov processes. For convenience, we assume that B does not
depend on x. The Langevin equation generates a stochastic time trajectory x(t). Let
f (x) be an arbitrary well-behaved function. Then, the infinitesimal difference d f [x(t)] ≡
f [x(t + dt)]− f [x(t)] is given by

d f [x(t)] = f ′[x(t)]dx(t) +
1
2

f ′′[x(t)]dx(t)2 + · · ·

= f ′[x(t)] {A[x(t), t]dt + B dW(t)}+ 1
2

f ′′[x(t)]B2 dW(t)2 + · · · .
(3.6)

Taking the average, one obtains that

d
dt
〈 f [x(t)]〉 =

〈
A[x(t), t] f ′[x(t)] +

1
2

B2 f ′′[x(t)]
〉

. (3.7)

13



3 Fokker-Planck Equation

The averages are expressed in terms of the transition probability density p(x, t|x0, t0) as∫
dx f (x)∂t p(x, t|x0, t0) =

∫
dx
[

A(x, t) f ′(x) +
1
2

b f ′′(x)
]

p(x, t|x0, t0)

=
∫

dx f (x)
[
−∂x(Ap) +

1
2

∂2
x(Bp)

]
.

(3.8)

Since this relation is valid for any function f (x), the transition probability should satisfy

∂

∂t
p(x, t|x0, t0) = −

∂

∂x
[A(x, t)p(x, t|x0, t0)] +

1
2

∂2

∂x2 [B
2 p(x, t|x0, t0)] . (3.9)

This is called the Fokker-Planck equation, named after a Dutch physicist Adriaan Fokker (1887–
1972) and a German physicist Max Planck (1985–1947). The first and second terms are
called the drift and the diffusion terms, respectively. One can also derive the Fokker-Planck
equation from the Kramers-Moyal expansion, which is not covered in this lecture.

When the are many variables x = (x1, x2, · · · ) coupled through the Langevin equation

dxi = Ai(x, t)dt + ∑
j

BijdWj(t), (3.10)

the Fokker-Planck equation for p(x, t|x0, t0) = p(x, t) is given by

∂t p = −∑
i

∂i[Ai p] + ∑
i,j

∂i∂j[Dij p] = LFP p (3.11)
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3 Fokker-Planck Equation

with the noise matrix Dij =
1
2 ∑k BikBjk or D = 1

2BB
t.

The Fokker-Planck equation can be written in the form of the continuity equation

∂t p + ∑
i

∂i Ji = 0 (3.12)

with the probability current
Ji = Ai p−∑

j
∂j(Dij p) . (3.13)

The probability current consists of the drift current and the diffusion current.

3.2.1 Random walks

The motion of a random walker is described by dx =
√

2D dW with A = 0 and B =
√

2D.
The corresponding Fokker-Planck equation is then given by

∂p
∂t

= D
∂2 p
∂x2 . (3.14)

This is the diffusion equation Einstein obtained.

3.2.2 Brownian motion

The Langevin equation for the Brownian motion is given by mdv = −γvdt +
√

2γTdW.
Comparing it with (3.5), one finds that A = −(γ/m)v and B =

√
2γT/m2. So, the

15



3 Fokker-Planck Equation

Fokker-Planck equation for P(v, t) becomes

∂

∂t
p(v, t) =

γ

m
∂

∂v
[vp(v, t)] +

γT
m2

∂2

∂v2 p(v, t) . (3.15)

The time-dependent solution can be obtained by solving the partial differential equa-
tion using the Fourier transformation technique. Here, I only calculate the steady-state
distribution function pss(v) = limt→∞ p(v, t). The steady-state distribution should satisfy

Jss(v) = −
γ

m
vpss(v)−

γT
m2 p′ss(v) = J0( = constant) . (3.16)

The steady-state current J0 should be 0. Otherwise, the probability would build up at
v = ∞ for positive J0 or v = −∞ for negative J0. The current-free condition yields that

pss(v) =
1√

2πT/m
e−

mv2
2T . (3.17)

This is the equilibrium Maxwell-Boltzmann distribution.

3.2.3 Three-Dimensional Brownian Motion in an External Force
(Kramers problem)

The Langevin equations are(
dx
dv

)
=

(
v

− γv
m + F

m

)
dt +

(
0

2γT
m dW

)
(3.18)
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3 Fokker-Planck Equation

The corresponding Fokker-Planck equation for p(x,v, t) is

∂t p =

[
−∇x · v +∇v ·

(
γ

m
v − F

m

)
+

γT
m2 ∇

2
v

]
p. (3.19)

In general, even the steady state distribution is hard to find.
The steay state can be found in the special case with the conservative force

F (x) = −∇xV(x) (3.20)

with a scalor potential V(x). The steady state distribution is given by the equilibrium
Boltzmann distribution

pss(x,v) =
1
Z

exp
[
− 1

T

(
1
2

mv2 + V(x)

)]
. (3.21)

3.2.4 Biased diffusion in a ring

Consider a Langevin equation dθ = f0 +
√

2T dW for an angle variable 0 ≤ θ < 2π. The
Fokker-Planck equation for p(θ, t) is given by

∂t p = −∂θ Jθ (3.22)

with the probability current Jθ = ( f0 − T∂θ)p(θ, t). In the steady state, the current should
be a constant J0 independent of θ. Therefore, Tp′ss(θ) = f0 pss(θ)− J0, which has a general
solution pss(θ) = c e( f0/T)θ + J0/ f0 with a constant c. The conitinuity pss(0) = pss(2π)

requires that c = 0 and the normalization
∫

dθpss(θ) = 1 yields that J0 = f0
2π .

17



3 Fokker-Planck Equation

3.3 Path integral or Onsager-Machlup formalism

Consider the Langevin equation dx = A(x)dt + B dW for a single variable x. Gener-
alization to multivariate problems is straightforward. We want to calculate the transi-
tion probability for an infinitesimal time interval, p(x′, t + dt|x, t). A particle can move
from x to x′ = x + (x′ − x) only when the Langevin noise takes the right value dW =
(x′ − x− A(x)dt)/B. Recalling that dW is Gaussian distributed with mean zero and vari-
ance dt, we obtain that

p(x′, t + dt|x, t) =
1√

2πB2dt
exp

(
− [x′ − x− A(x)dt]2

2B2dt

)
. (3.23)

The transition probability over a finite time interval p(x, t|x0, t0) is obtained by using
the Markov property. We divide the time interval [0 : t] into N sub-intervals of duration
τ = t/N. Then, the transition probability is written as

p(x, t|x0, 0) =

[
N−1

∏
i=1

∫
dxi

] [
N−1

∏
i=0

p(xi+1, ti+1|xi, ti)

]
. (3.24)

In the N → ∞ limit, it becomes

p(x, t|x0, 0) = lim
N→∞

[
N−1

∏
i=0

∫ dxi√
2πB2τ

]
exp

(
−

N−1

∑
i=0

[xi+1 − xi − A(xi)τ]
2

2B2τ

)
=
∫

[Dx(s)] e−
∫

ds[ẋ(s)−A(x(s)]2/(2B2)

(3.25)
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3 Fokker-Planck Equation

The multivariate system with dxi = Aidt + BijdWj has the transition probability

p(x, t|x0, 0) =
∫

[Dx(s)] e−
1
4
∫ t

0 ds[ẋ(s)−A(x(s))]i D
−1
ij [ẋ(s)−A(x(s))]j

=
∫

[Dx(s)] e−A[x(s)]
(3.26)

with the action functional A[x(s)] and Dij =
1
2 ∑k BikBjk.

The Onsager-Machlup [OM53] formalism allows us to write down the formal expression
for the conditional path probability density

Π [x[s]|x0] ∝ e−A[x(s)] (3.27)

3.4 Detailed balance and the Fluctuation Dissipation
Theorem

A Fokker-Planck system with the steady state solution pss(x) = e−Φ(x) is said to satisfy
the detailed balance if

p(x′, t′|x, t)pss(x) = p(εx, t|εx′, t′)pss(εx′) (3.28)

with the parity operator ε.
Please refer to the lecture note of Prof. Yeo of PSI 2014.
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4
Stochastic Thermodynamics

Figure 4.1: Thermal system

We have studied the Langevin equation
and the Forkker-Planck equation formal-
ism for general stochastic systems. We
are ready to study thermodynamics of
such systems at the level of microscopic
stochastic paths. We will learn how to
define thermodynamic quantities such as
heat, work, and entropy, and investigate
some symmetry properties of thermody-
namic systems. References for this chapter
are Refs. [Sek10, Sei05, Kwo15].
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4 Stochastic Thermodynamics

4.1 Stochastic engetics

4.1.1 Underdamped Langevin system

Consider a particle (or a system of particles) in thermal contact with a heat bath of tem-
perature T. The Langevin equation is given by

x = vdt

mdv = fc(x)dt + fnc(x)dt− γvdt +
√

2γTdW(t) ,
(4.1)

where fc(x) = − dV(x)
dx is the conservative force, and fnc is a time-independent non-

conservative force. The internal energy of the system is defined as

E =
1
2

mv2 + V(x) . (4.2)

It is a fluctuating variable since v is a stochastic variable. For the change of the kinetic
energy during the infinitesimal time step dt, we need to calculate

dv2 ≡ (v + dv)2 − v2 = 2vdv + (dv)2 = 2
v + (v + dv)

2
dv = 2v ◦ dv (4.3)

Note that one should not neglect (dv)2 because dv involves dW whose square is of the
order of dt. We can use the form of normal calculus by introducing the special multi-
plication scheme denoted as ◦. This is called the Stratonovich calculus: X(t) ◦ dY(t) =
X(t)+X(t+dt)

2 dY(t).
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4 Stochastic Thermodynamics

The energy change is then given by

dE = mv ◦ dv− fc(x) ◦ dx . (4.4)

Elliminating fc = mdv/dt− fnc + γvdt−
√

2γTdW/dt using the Langevin equation, one
obtains

dE = mv ◦ dv− v ◦
[
mdv− fncdt− (−γvdt +

√
2γTdW)

]
= fnc ◦ dx + v ◦ (−γvdt +

√
2γTdW)

= dW + dQ.

(4.5)

This is the first law of thermodynamics for the Langiven system with the work and the
heat

dW = fnc ◦ dx

dQ = v ◦
(
−γvdt +

√
2γT dW

)
= FB ◦ dx.

(4.6)

The expression for the heat looks quite intuitive. It is the “work" done by the force FB
from the heat bath [Sek10].

4.1.2 Overdamped Langevin system

Langevin equation is given by

γdx = fcdt + fncdt +
√

2γTdW = ftotdt +
√

2γTdW . (4.7)
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4 Stochastic Thermodynamics

The first law of thermodynamics becomes as

dV = dW + dQ (4.8)

where

dW = fnc ◦ dx

dQ = FB ◦ dx = −( fc + fnc) ◦ dx .
(4.9)

4.1.3 Overdamped Langevin system with time-dependent potential

Suppose that the potential energy includes a time dependence parameter

V = V(x, λ(t)) . (4.10)

The parameter is called the protocol. You may think of a harmonic oscillator with a time
dependent spring constant. The first law of thermodynamics becomes

dV = dWnc + dWJ + dQ (4.11)

where
dWJ =

∂V
∂λ

dλ

dt
dt (4.12)

is called the Jarzynski work.
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4 Stochastic Thermodynamics

4.2 Nonequilibrium entropy

What is the entropy of the nonequilibrium system? We adopt the Shannon’s information
entropy [Sha48] as the thermodynamic entropy. It is defined as

〈Ssys(t)〉 = −
∫

dxp(q, t) ln p(q, t) . (4.13)

It is the ensemble averge of the instant entropy

Ssys(q(t), t) = − ln p(q(t), t) (4.14)

of a system being at q(t) at time t.
When a system evolve in time following a stochastic path [q(s)] for ti ≤ s ≤ t f , the

system entropy changes as

∆Ssys[q] = − ln
p(q(t f ), t f )

p(q(ti), ti)
. (4.15)

The entropy change of the heat bath is given by the Clausius form

∆SB[q] =
−∆Q

T
. (4.16)

The total entropy change is then given by ∆Stot = ∆Ssys + ∆SB. Does it satisfy the second
law of thermodynamics?
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4 Stochastic Thermodynamics

4.3 Time-irreversibility

We will show that the entropy is directed related to the time-irreversibility. Specifically, I
explain the concept in the context of the overdamped system with the Langevin equation
in (4.7). Using the Onsager-Machlup formalism, we can write down the formal expression
for the probability density that the system would follow a path [x(s)] connecting x at time
t to x′ = x + dx at time t + dt. It is given by

Prob[x(s)] = pi(x)Π[x(s)|xi] ∝ p(x, t) exp

[
−γdt

4T

{
(x′ − x)

dt
− ftot(x)

γ

}2
]

, (4.17)

where f (x) = fc(x) + fnc(x) is the total force.
Imagine the time-reversed path [xR(s)] connecting x′ at time t to x at time t + dt. The

probability density of the reverse path is given by

Prob[xR(s)] ∝ p(x′, t + dt) exp

[
−γdt

4T

{
(x− x′)

dt
− ftot(x′)

γ

}2
]

. (4.18)

The irreversibility is measured with the log ratio of the path probability densities:

ln
Prob[x]

Prob[xR]
= ln

p(x, t)
p(x′, t + dt)

+
dt
4T

[
2
(x′ − x)

dt
( f (x) + f (x′))− f (x)2 − f (x′)2

γ

]
= dSsys +

f ◦ dx
T

= dSsys +
−dQ

T
= dSsys + dSB

(4.19)
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Figure 4.2: Forward and reverse paths
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4 Stochastic Thermodynamics

That is to say, the total entropy change is the same as the irreversibility. Note that we have
degrees of freedom in choosing the initial and final probability distributions.

4.4 Fluctuation theorem for the entropy production

It is straightforward to show that〈
e−∆S

〉
=
∫

dSP(S)e−S = 1 (4.20)

for any Langevin system. This is called the integral fluctuation theorem (IFT). Applying
the Jensen’s inequality 〈e−x〉 ≥ e−〈x〉, one can derive the second law of thermodynamics

〈∆S〉 ≥ 0 . (4.21)

When the system is in the steady state, we have more powerful fluctuation theorem for
the probability distribution P(S).

P(S)
P(−S)

= eS . (4.22)

This is called the detailed fluctuation theorem (DFT). The DFT holds only when the system
satisfies the involution property.
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4 Stochastic Thermodynamics

4.5 FT for the work

Consider a system with a time-dependent potential energy V(x, λ(t)). If it is in the ther-
mal equilibrium state initially, then we have the IFT

〈e−W/T〉 = e−∆F/T . (4.23)

This is called the Jarzynski equality [Jar97]. We also have the DFT

PF(W)

PR(−W)
= e−∆(W−F/T). (4.24)

which is called the Crooks fluctuation theorem [Cro99].

4.6 More

Maxwell’s demon, heat engine, ...
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5
Summary

• Langevin equation : stochastic processes, stochastic differential equation, numerical
integration

• Fokker-Planck equation : Markov process, Chapmann-Kolmogorov equation, Ito and
Stratonovich, Onsager-Machlup path integral formalism

• Stochastic thermodynamics : stochastic energetics, irreversibility, entropy produc-
tion, fluctuation theorem, ...
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5 Summary

[Project] The motion of a rotary motor is described by the overdamped Langevin equation

dθ

dt
= −dV(θ)

dθ
+ f0 + η(t),

where 0 ≤ θ < 2π is the angular position of the motor, V(θ) = cosθ is the periodic
potential, and f0 is the constant applied torque.
(1) Write down the corresponding Fokker-Planck equation for the probability distribution
function P(θ, t) and solve it to find the stationary state distribution Pss(θ). Compare it
with the equilibrium Boltzmann distribution.
(2) Find the average angular velocity Ω = limt→∞

1
t 〈(θ(t) − θ(0))〉 as a function of the

applied torque f0.
(3) Prepare your system in the equilibrium state with f0 and then turn on the torque at
time t = 0. Solve the Langevin equation numerically upto time t = τ and measure the
work done by the external torque

W(τ) =
∫ τ

0
f0θ̇(t′)dt′ .

By performing the numerical simulations many times, you can construct the probabil-
ity distribution function for the work P(W). Test the integral and detailed fluctuation
theorems by computing 〈e−W〉 and P(W)/P(−W).
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